Rapid Voltage - dependent Dissociation of Scorpion « - Toxins Coupled to Na Channel Inactivation in Amphibian Myelinated Nerves

نویسنده

  • KUO WANG
چکیده

The voltage-dependent action of several scorpion a-toxins on Na channels was studied in toad myelinated nerve under voltage clamp. These toxins slow the declining phase of macroscopic Na current, apparently by inhibiting an irreversible channel inactivation step and thus permitting channels to reopen from a closed state in depolarized membranes. In this article, we describe the rapid reversal of a-toxin action by membrane depolarizations more positive than +20 mV, an effect not achieved by extensive washing. Depolarizations that were increasingly positive and of longer duration caused the toxin to dissociate faster and more completely, but only up to a limiting extent . Repetitive pulses had a cumulative effect equal to that of a single pulse lasting as long as their combined duration . When the membrane of a nonperfused fiber was repolarized, the effects of the toxin returned completely, but if the fiber was perfused during the conditioning procedure, recovery was incomplete andoccurred more slowly, as it did at lower applied toxin concentrations . Other a-type toxins, from the scorpion Centruroides sculpturalus (IVa) and the sea anemone Anemonia sulcata (ATXII), exhibited similar voltage-dependent binding, though each had its own voltage range and dissociation rate . We suggest that the dissociation of the toxin molecule from the Na channel is coupled to the inactivation process. An equivalent valence for inactivation gating, of <1 e per channel, is calculated from the voltage-dependent change in toxin affinity .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Voltage - dependent Dissociation of Scorpion « - Toxins Coupled to Na Channel Inactivation in Amphibian Myelinated Nerves GARY R . STRICHARTZ and GING KUO

The voltage-dependent action of several scorpion a-toxins on Na channels was studied in toad myelinated nerve under voltage clamp. These toxins slow the declining phase of macroscopic Na current, apparently by inhibiting an irreversible channel inactivation step and thus permitting channels to reopen from a closed state in depolarized membranes. In this article, we describe the rapid reversal o...

متن کامل

Rapid voltage-dependent dissociation of scorpion alpha-toxins coupled to Na channel inactivation in amphibian myelinated nerves

The voltage-dependent action of several scorpion alpha-toxins on Na channels was studied in toad myelinated nerve under voltage clamp. These toxins slow the declining phase of macroscopic Na current, apparently by inhibiting an irreversible channel inactivation step and thus permitting channels to reopen from a closed state in depolarized membranes. In this article, we describe the rapid revers...

متن کامل

Interaction of Scorpion α-Toxins with Cardiac Sodium Channels

The effects of the scorpion alpha-toxins Lqh II, Lqh III, and LqhalphaIT on human cardiac sodium channels (hH1), which were expressed in human embryonic kidney (HEK) 293 cells, were investigated. The toxins removed fast inactivation with EC(50) values of <2.5 nM (Lqh III), 12 nM (Lqh II), and 33 nM (LqhalphaIT). Association and dissociation rates of Lqh III were much slower than those of Lqh II...

متن کامل

Kinetic analysis of the action of Leiurus scorpion alpha-toxin on ionic currents in myelinated nerve

The effects of a neurotoxin, purified from the venom of the scorpion Leiurus quinquestriatus, on the ionic currents of toad single myelinated fibers were studied under voltage-clamp conditions. Unlike previous investigations using crude scorpion venom, purified Leiurus toxin II alpha at high concentrations (200-400 nM) did not affect the K currents, nor did it reduce the peak Na current in the ...

متن کامل

Binding modes and functional surface of anti-mammalian scorpion α-toxins to sodium channels.

Scorpion α-toxins bind to the voltage-sensing domains of voltage-gated sodium (Na(V)) channels and interfere with the inactivation mechanisms. The functional surface of α-toxins has been shown to contain an NC-domain consisting of the five-residue turn (positions 8-12) and the C-terminus (positions 56-64) and a core-domain centered on the residue 18. The NC- and core-domains are interconnected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003